

DUAL OPERATIONAL AMPLIFIER

FEATURES

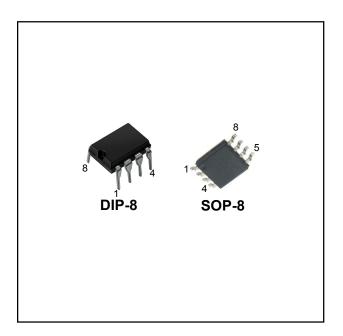
■ Wide Power Supply Range

- Single Supply: 3V ~ 32V

- Dual Supplies: ±1.5V ~ ±16V

■ Lower Input Offset Voltage: 2mV (Typ.)

 Input Common-Mode Voltage Range Include Ground

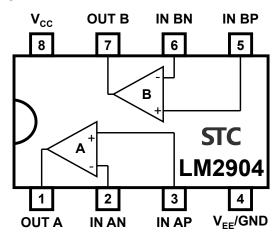

 Differential Input Voltage Range Equal to the Power Supply Voltage

■ Large Output Voltage Swing: 0V ~ (V_{CC} - 1.5V)

Large DC Voltage Gain: 100dB

Internal Frequency Compensated for Unity
 Gain

Wide Bandwidth (Unity Gain): 1MHz



DESCRIPTION

The **STComponent** LM2904 consists of two independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.

Application areas include transducer amplifiers, dc gain blocks and all the conventional op amp circuits that now can be more easily implemented in single power supply systems.

INTERNAL SCHEMATIC DIAGRAM

DEVICE SUMMARY

Ordering Code	Package Type	Marking ⁽¹⁾	Shipping
LM2904A	DIP-8		Tube
LM2904BT	SOP-8	LM2904 STC YM	Tube
LM2904BR	SOP-8	SIC IIVI	Taping reel

Note 1: **Y**: Year code **M**: Month code

ABSOLUTE MAXIMUM RATINGS (2)

T_A = 25°C, unless otherwise specified.

PARAMETER	SYMBOL	RATINGS	UNIT	
Single Supply Voltage (Referenced to GND = 0V)	V _{cc}	32	٧	
Dual Supply Voltage	V _{CC} /V _{EE}	+16/-16	V	
Differential Input Voltage	V _{ID}	32	٧	
Input Voltage	Vı	-0.3 ~ +32	V	
Power Dissipation DIP-8	Б	570	mW	
SOP-8	P _D	32 +16/-16 32 -0.3 ~ +32	mW	
Operating Ambient Temperature Range	T_{opr}	-40 ~ +125	°C	
Storage Temperature Range	$T_{ ext{stg}}$	-65 ~ +150	°C	
Soldering Temperature & Time	T_{solder}	260°C, 10 sec.		

Note 2: Absolute Maximum Ratings are those values beyond which the device could be permanently damaged. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $T_A = 25$ °C, $V_{CC} = 5$ V, All voltage referenced to $V_{EE}/GND = 0$ V unless otherwise noted.

PARAMET	ER	SYMBOL	TEST CONDITIONS (3)		MIN	TYP	MAX	UNIT
Input Offset Voltage		V _{IO}	$V_{CM} = 0V \sim (V_{CC} - 1.5V),$			2	7	mV
			$V_{O} = 1.4V, R_{S} = 0\Omega$	*			15	
Input Offset Voltage Drift		$\Delta V_{IO}/\Delta T_A$		*		7		μV/°C
Input Offset Current		I _{IO}				3	50	- nA
				*			100	
Input Offset Curre	nt Drift	$\Delta I_{IO}/\Delta T_A$		*		10		pA/°C
(4)		I _{IB}				45	250	- nA
Input Bias Curren	Input Bias Current (4)		$V_{CM} = 0V$	*			300	
Input Common-Mo	Input Common-Mode		V _{CC} = 30V		0		28.5	V
Voltage Range (5)		V _{ICM}		*	0		28	
Supply Voltage	Supply Voltage		V_{CC} = 30V, R_L = ∞	*		1.5	2.3	- mA
(Each Amplifier)		I _{cc}	V_{CC} = 5V, R_L = ∞	*		0.5	1.2	
		G _V	$V_{CC} = 15V, R_L > 2k\Omega,$ (For $V_O = 1V \sim 11V$)		50	100		V/mV
Large Signal Volta	Large Signal Voltage Gain			*	25			
Common-Mode R Ratio	ejection	CMRR	$V_{CM} = 0V \sim (V_{CC} - 1.5V)$		70	85		dB
Power Supply Rej Ratio	ection	PSRR	V _{CC} = 5V ~ 30V		65	100		dB
Amplifier-to-Amplifier Coupling		X _{TALK}	f = 1kHz ~ 20kHz, (Input referred)			-120		dB
Output Current	Source	I _{SOURCE}	$V_{INP} = 1V, V_{INN} = 0V,$ $V_{CC} = 15V, V_{O} = 2V$			-40	-20	- mA
				*		-20	-10	
	Sink	Sink I _{SINK}	$V_{INP} = 0V, V_{INN} = 1V,$ $V_{CC} = 15V, V_{O} = 2V$		10	20		mA
				*	5	8		IIIA
			$V_{INP} = 0V, V_{INN} = 1V,$ $V_{CC} = 15V, V_{O} = 0.2V$		12	50		μA

PARAMETER	SYMBOL	TEST CONDITIONS (3)		MIN	TYP	MAX	UNIT
Short Circuit To Ground (7)	I _{SC}	V _{CC} = 15V			40	60	mA
Output Voltage Swing	V _{OH}	V_{CC} = 30V, R_L = 2k Ω	*	26			V
		V_{CC} = 30V, R_L = 10k Ω	*	27	28		
	V _{OL}	V_{CC} = 5V, R_L = 10k Ω	*		5	20	mV
Differential Input Voltage	V _{ID}					V _{CC}	V

 $T_A = 25$ °C, $V_{CC} = 5V$, All voltage referenced to $V_{EE}/GND = 0V$ unless otherwise noted.

- Note 3: The "*" denotes specifications which apply over the full operating temperature range, $-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$.
- Note 4: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.
- Note 5: The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V (at 25°C). The upper end of the common-mode voltage range is V_{CC} = 1.5V (at 25°C), but either or both inputs can go to +32V without damage, independent of the magnitude of V_{CC}.
- Note 6: Due to proximity of external components, insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance increases at higher frequencies.
- Note 7: Short circuits from the output to V_{CC} can cause excessive heating and eventual destruction. When considering short circuits to ground, the maximum output current is approximately 40mA independent of the magnitude of V_{CC}. At values of supply voltage in excess of +15V, continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.

TYPICAL APPLICATION CIRCUIT

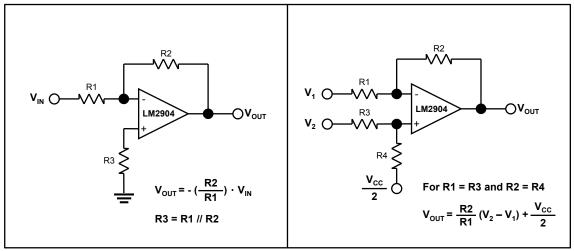


Figure 1: Cancelling the Error Caused Input Bias Current

Figure 2: Difference Amplifier

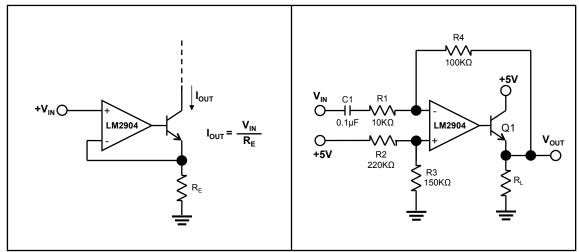
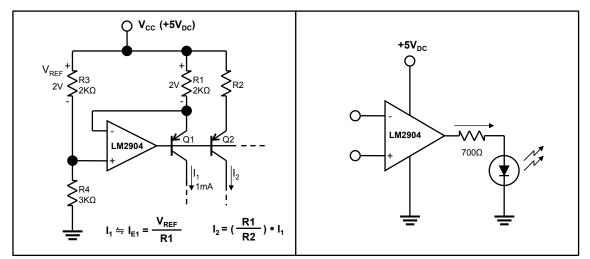
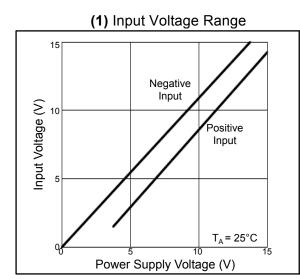


Figure 3: High Compliance Current Sink

Figure 4: Power Amplifier

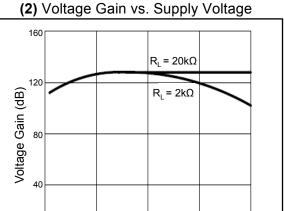

Figure 5: Fixed Current Source

Figure 6: LED Driver

ELECTRICAL CHARACTERISTICS CURVES

Power Supply Voltage (V)

T_A = 25°C

(3) V_{OUT} vs. Output Source Current

T_A = 25°C

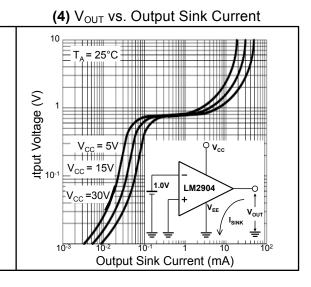
LM2904

V_{EE}

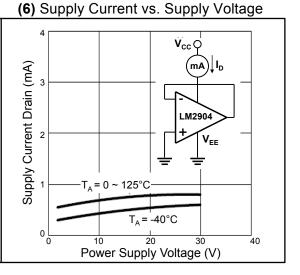
V_{OUT}

V_{EE}

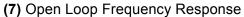
V_{OUT}

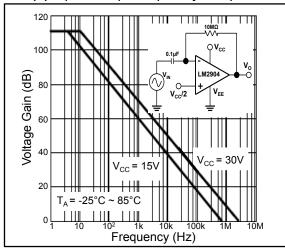

10⁻³

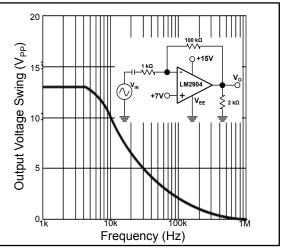
10⁻²

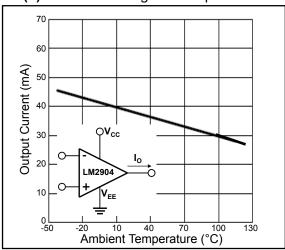

10⁻¹

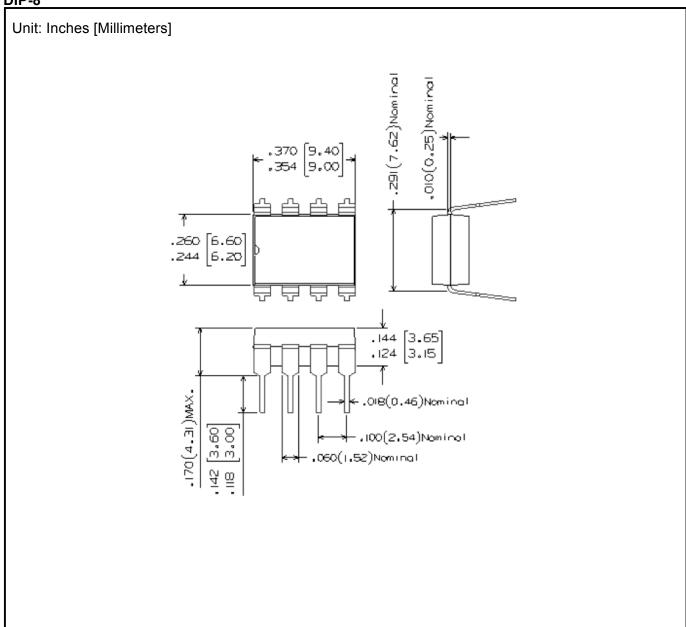
110 10²

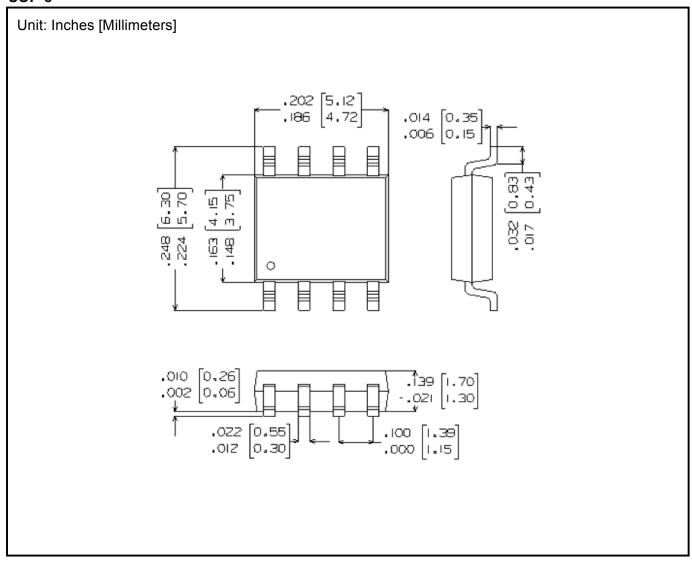

Output Source Current (mA)








(9) Current Limiting vs. Temperature


PACKAGE DIMENSION

DIP-8

SOP-8

NOTICE

Information furnished by **STComponent** is believed to be accurate and reliable. However, no responsibility is assumed for its use. Customers are responsible for their products and applications using **STComponent** components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. **STComponent** reserves the right to make changes to their products or specification without notice. Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete.