

for a wide range of

d on-card regulation

julation. When with

HIGH PSRR POSITIVE VOLTAGE REGULATOR

FEATURES

Fixed Output Voltage 6.0V

- Output Accuracy ±3%
- Higher Output Current
- Good PSRR
- Thermal Overload Protection
- Short Circuit Current Limiting
- Output Transistor SOA Protection

DESCRIPTION

The **STComponet** ST78R06 is an integrated-circuit voltage regulator that applications with good power supply reject ratio. These applications includ don-call for elimination of noise and distribution problems associated with single gulation adequate heat-sinking, this voltage regulator can deliver in excess of 200m.

This voltage regulator employ built-in current limiting, thermal shutdown protection that makes the device essentially immune to damage from output overloads.

TYPICAL APPLICATION CIRCUIT

Figure 1: Basic Application Circuit

ST78R06

DEVICE SUMMARY		THE P				STC		
Ordering Code	Package Material	Pin Configuration			Package Type	Shipping	Marking ⁽¹⁾	
	Wateria	V _{OUT}	1	V _{IN}	туре			
ST78R06P	Lead free	1	2	3	SOT-89	STC Taping reel	78R06 YM	
Note 1: Y : Year code M : Month code					Q			

INTERNAL SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS⁽²⁾

T_A = 25°C, All voltage respect to GND unless otherwise specified.

PARAMETER	SYMBOL	RATINGS	UNIT	
Input Voltage	V _{IN}	30	V	
Power Dissipation ⁽³⁾	PD	Internal limited		
Maximum Junction Temperature	T _{JMAX}	150	°C	
Operating Junction Temperature Range	T_{opr}	-40 ~ +125	°C	
Storage Temperature Range	T_{stg}	-55 ~ +150	°C	
Soldering Temperature & Time	T_{solder}	260°C, 10 sec.		

Note 2: Absolute Maximum Ratings are those values beyond which the device could be permanently damaged. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Note 3: Maximum power dissipation is a function of T_{JMAX} , $R_{\theta JA}$ and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_{JMAX} - T_A)/R_{\theta JA}$. Due to variations in individual device electrical characteristics and thermal resistance, the built-in thermal-overload protection may be activated at power levels slightly above or below the rated dissipation. $R_{\theta JA}$ will depend upon the printed circuit layout.

Thermal Data

PARAMETER	SYMBOL	RATINGS	UNIT
Thermal Resistance, Junction-to-Case	R _{øJC}	51	°C/W
Thermal Resistance, Junction-to-Ambient	R _{øJA}	200	°C/W

STCOMPONENT

ELECTRICAL CHARACTERISTICS

 T_A = 25°C, V_{IN} = 10V, I_O = 40mA, C_{IN} = 0.33µF, C_{OUT} = 0.1µF, unless otherwise noted.

PARAMETER	SYMBOL	TEST	MIN	ТҮР	МАХ	UNIT	
	Vo			5.8	6	6.2	V
Output Voltage		$8.0V \le V_{IN} \le 20$	5.75	6	6.25		
	ΔV _o	I _O = 1mA ~ 200mA			14	100	mV
Load Regulation		I _O = 1mA ~ 80r		5	50		
Line Regulation	ΔVo	I _O = 40mA	$8.0V \le V_{IN} \le 20V$		8	100	mV
			9.0V ≤ V _{IN} ≤ 13V		5	50	
Quiescent Current	Ι _Q	T _J = 25°C			3.8	8	mA
Quiescent Current Change	ΔIQ	$8.0V \le V_{IN} \le 20V$				1.5	mA
		1mA ≤ I _O ≤ 100mA				0.5	
Output Noise Voltage	V _N	10Hz ≤ f ≤ 100		49		μV	
Ripple Rejection	RR	$8.0V \le V_{IN} \le 18$	62	80		dB	
Short-Circuit Output Current	I _{Short}	T _J = 25°C			270		mA
Dropout Voltage	VD	T _J = 25°C		2		V	
Average Temperature Coefficient of Output Voltage	$\Delta V_O / \Delta T_A$	I _O = 5mA			-0.35		mV/°C

PACKAGE DIMENSION

SOT-89

Unit: Inches [Millimeters]

NOTICE

Information furnished by **STComponent** is believed to be accurate and reliable. However, no responsibility is assumed for its use. Customers are responsible for their products and applications using **STComponent** components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. **STComponent** reserves the right to make changes to their products or specification without notice. Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete.